Plexus

Contents:

  • plexus package
    • Subpackages
      • plexus.analysis package
      • plexus.cli package
        • Subpackages
        • Submodules
      • plexus.config package
      • plexus.dashboard package
      • plexus.data package
      • plexus.linting package
      • plexus.metrics package
      • plexus.plexus_logging package
      • plexus.processors package
      • plexus.reports package
      • plexus.scores package
      • plexus.storage package
      • plexus.utils package
    • Submodules
  • plexus.data package
  • plexus.scores package
  • plexus.processors package
  • plexus.storage package
  • plexus.cli package
    • Subpackages
      • plexus.cli.analyze package
      • plexus.cli.batch package
      • plexus.cli.bertopic package
      • plexus.cli.cost package
      • plexus.cli.data package
      • plexus.cli.data_lake package
      • plexus.cli.dataset package
      • plexus.cli.evaluation package
      • plexus.cli.feedback package
        • Submodules
      • plexus.cli.item package
      • plexus.cli.metrics package
      • plexus.cli.prediction package
      • plexus.cli.procedure package
      • plexus.cli.record_count package
      • plexus.cli.report package
      • plexus.cli.result package
      • plexus.cli.score package
      • plexus.cli.score_chat package
      • plexus.cli.scorecard package
      • plexus.cli.shared package
      • plexus.cli.task package
      • plexus.cli.training package
      • plexus.cli.tuning package
    • Submodules
  • plexus.dashboard package
Plexus
  • plexus package
  • plexus.cli package
  • plexus.cli.feedback package
  • plexus.cli.feedback.feedback_search module
  • View page source

plexus.cli.feedback.feedback_search module

Command for searching and finding feedback items based on various criteria.

plexus.cli.feedback.feedback_search.build_date_filter(days: int) → str

Build a date filter for the last N days.

async plexus.cli.feedback.feedback_search.fetch_feedback_items_fallback(client, account_id: str, scorecard_id: str, score_id: str, start_date: datetime, end_date: datetime) → List[FeedbackItem]

Fallback method using the simple filter approach (original implementation).

async plexus.cli.feedback.feedback_search.fetch_feedback_items_with_gsi(client, account_id: str, scorecard_id: str, score_id: str, start_date: datetime, end_date: datetime) → List[FeedbackItem]

Fetch feedback items using the same GSI query approach as feedback_summary.py. This ensures we get all available data.

async plexus.cli.feedback.feedback_search.find_feedback_async(scorecard: str, score: str, days: int, limit: int | None, initial_value: str | None, final_value: str | None, format: str, verbose: bool, account_identifier: str | None, prioritize_edit_comments: bool)

Async implementation of find_feedback command.

plexus.cli.feedback.feedback_search.format_feedback_item_yaml(item: FeedbackItem, include_metadata: bool = False) → Dict[str, Any]

Format a FeedbackItem as a dictionary for YAML output.

plexus.cli.feedback.feedback_search.prioritize_feedback_with_edit_comments(feedback_items: List[FeedbackItem], limit: int) → List[FeedbackItem]

Prioritize feedback items that have edit comments when applying a limit.

Args:

feedback_items: List of FeedbackItem objects limit: Maximum number of items to return

Returns:

List of prioritized and limited feedback items

Previous Next

© Copyright Anthus AI Solutions.

Built with Sphinx using a theme provided by Read the Docs.