plexus.dashboard.api.models.evaluation module

Evaluation Model - Python representation of the GraphQL Evaluation type.

This model represents individual Evaluations in the system, tracking: - Accuracy and performance metrics - Processing status and progress - Error states and details - Relationships to accounts, scorecards, and scores

All mutations (create/update) are performed in background threads for non-blocking operation.

class plexus.dashboard.api.models.evaluation.Evaluation(id: str, type: str, accountId: str, status: str, createdAt: datetime.datetime, updatedAt: datetime.datetime, client: plexus.dashboard.api.client._BaseAPIClient | None = None, parameters: Dict | None = None, metrics: Dict | None = None, inferences: int | None = None, accuracy: float | None = None, cost: float | None = None, startedAt: datetime.datetime | None = None, elapsedSeconds: int | None = None, estimatedRemainingSeconds: int | None = None, totalItems: int | None = None, processedItems: int | None = None, errorMessage: str | None = None, errorDetails: Dict | None = None, scorecardId: str | None = None, scoreId: str | None = None, confusionMatrix: Dict | None = None, scoreGoal: str | None = None, datasetClassDistribution: Dict | None = None, isDatasetClassDistributionBalanced: bool | None = None, predictedClassDistribution: Dict | None = None, isPredictedClassDistributionBalanced: bool | None = None, taskId: str | None = None)

Bases: BaseModel

__init__(id: str, type: str, accountId: str, status: str, createdAt: datetime, updatedAt: datetime, client: _BaseAPIClient | None = None, parameters: Dict | None = None, metrics: Dict | None = None, inferences: int | None = None, accuracy: float | None = None, cost: float | None = None, startedAt: datetime | None = None, elapsedSeconds: int | None = None, estimatedRemainingSeconds: int | None = None, totalItems: int | None = None, processedItems: int | None = None, errorMessage: str | None = None, errorDetails: Dict | None = None, scorecardId: str | None = None, scoreId: str | None = None, confusionMatrix: Dict | None = None, scoreGoal: str | None = None, datasetClassDistribution: Dict | None = None, isDatasetClassDistributionBalanced: bool | None = None, predictedClassDistribution: Dict | None = None, isPredictedClassDistributionBalanced: bool | None = None, taskId: str | None = None)
accountId: str
accuracy: float | None = None
confusionMatrix: Dict | None = None
cost: float | None = None
classmethod create(client: _BaseAPIClient, type: str, accountId: str, *, status: str = 'PENDING', scorecardId: str | None = None, scoreId: str | None = None, taskId: str | None = None, **kwargs) Evaluation

Create a new Evaluation.

createdAt: datetime
datasetClassDistribution: Dict | None = None
elapsedSeconds: int | None = None
errorDetails: Dict | None = None
errorMessage: str | None = None
estimatedRemainingSeconds: int | None = None
classmethod fields() str

Fields to request in queries and mutations

classmethod from_dict(data: Dict[str, Any], client: _BaseAPIClient) Evaluation

Create an instance from a dictionary of data

classmethod get_by_id(id: str, client: _BaseAPIClient, include_score_results: bool = False) Evaluation
inferences: int | None = None
isDatasetClassDistributionBalanced: bool | None = None
isPredictedClassDistributionBalanced: bool | None = None
metrics: Dict | None = None
parameters: Dict | None = None
predictedClassDistribution: Dict | None = None
processedItems: int | None = None
scoreGoal: str | None = None
scoreId: str | None = None
scorecardId: str | None = None
startedAt: datetime | None = None
status: str
taskId: str | None = None
totalItems: int | None = None
type: str
update(**kwargs) None

Update Evaluation fields in a background thread.

This is a non-blocking operation - the mutation is performed in a background thread.

Args:

**kwargs: Fields to update

updatedAt: datetime