plexus.scores.AWSComprehendEntityExtractor module
- class plexus.scores.AWSComprehendEntityExtractor.AWSComprehendEntityExtractor(**parameters)
Bases:
Score
This score uses AWS Comprehend to extract the first named entity from the transcript.
Initialize the Score instance with the given parameters.
Parameters
- **parametersdict
Arbitrary keyword arguments that are used to initialize the Parameters instance.
Raises
- ValidationError
If the provided parameters do not pass validation.
- class Result(*, parameters: Parameters, value: str | bool, metadata: dict = {}, error: str | None = None, explanation: str)
Bases:
Result
Model output data structure.
Attributes
- scorestr
The predicted score label.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- explanation: str
- model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- __init__(**parameters)
Initialize the Score instance with the given parameters.
Parameters
- **parametersdict
Arbitrary keyword arguments that are used to initialize the Parameters instance.
Raises
- ValidationError
If the provided parameters do not pass validation.
- extract_first_person_entity(transcript: str) str
- extract_quotes_that_include_first_person_entity(transcript: str, first_person_entity: str) list[str]
- predict(context, model_input: Input)
Make predictions on the input data.
Parameters
- contextAny
Context for the prediction (e.g., MLflow context)
- model_inputScore.Input
The input data for making predictions.
Returns
- Union[Score.Result, List[Score.Result]]
Either a single Score.Result or a list of Score.Results
- predict_validation()
Placeholder method to satisfy the base class requirement. This validator doesn’t require traditional training.
- register_model()
Register the model with MLflow by logging relevant parameters.
- save_model()
Save the model to a specified path and log it as an artifact with MLflow.
- train_model()
Placeholder method to satisfy the base class requirement. This validator doesn’t require traditional training.